• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Offline Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • NEW
    • JEE MAIN 2025
    • NEET
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • TALLENTEX
    • AOSAT
    • ALLEN e-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
NCERT Solutions
Class 7
Maths
Chapter 11 Exponents and Powers

NCERT Solutions Class 7 Maths Chapter 11 - Exponents and Powers

In NCERT class 7 maths exponents and powers, students will learn how to represent numbers in standard form, understand the laws of exponents, and practice various operations like multiplication and division involving exponents. The solutions help students to understand different aspects of exponents and powers thus making it easier for the students to understand it.

These solutions are designed in a step-by-step manner to simplify intricate problems of chapter exponents and powers class 7, enabling students to understand complex calculations efficiently. Overall, NCERT Solutions for Class 7 Maths chapter 11 exponents and powers help students develop a strong understanding of exponents and powers, enhance their problem-solving abilities, and prepare them effectively for exams. The inclusion of examples, detailed explanations, and practical applications ensures that students can apply these concepts in real-life situations and mathematical problems.

1.0Download Class 7 Maths Chapter 11 NCERT Solutions PDF Online

Students can Download NCERT Solutions Class 7 Maths Chapter 11 from the below link and Practice from anywhere anytime.

NCERT Solutions for  Class 7 Maths Chapter 11 - Exponents and Powers

2.0NCERT Solutions Class 6 Maths Chapter 11 Exponents and Powers

These exercises prove to be quite helpful for students as it is often seen that questions can be repeated from the NCERT books during final exams and also if one practices these questions daily, he or she can figure out that they were not able to answer well in which section and gradually give more time to that particular area. 

Exercises

Total Number of Questions

Exponents and powers class 7 ex 11.1

8

Exponents and powers class 7 ex 11.2

5

Exponents and powers class 7 ex 11.3

4


3.0NCERT Questions with Solutions for Class 7 Maths Chapter 11 - Detailed Solutions

Exercise: 11.1

  • Find the value of: (i) 26 (ii) 93 (iii) 112 (iv) 54 Sol. (i) 26=2×2×2×2×2×2=64 (ii) 93=9×9×9=729 (iii) 112=11×11=121 (iv) 54=5×5×5×5=625
  • Express the following in exponential form : (i) 6×6×6×6 (ii) t×t (iii) b×b×b×b (iv) 5×5×7×7×7 (v) 2×2×a×a (vi) a×a×a×c×c×c×c×d Sol. (i) 6×6×6×6=64 (ii) t×t=t2 (iii) b×b×b×b=b4 (iv) 5×5×7×7×7=52×73 (v) 2×2×a×a=22×a2 (vi) a×a×a×c×c×c×c×d=a3×c4×d
  • Express each of the following numbers using exponential notation: (i) 512 (ii) 343 (iii) 729 (iv) 3125 Sol. (i) 512 =2×2×2×2×2×2×2×2×2=29
2512
2256
2128
264
232
216
28
24
22
1

(ii) 343 =7×7×7=73

7343
749
77
1

(iii) 729 =3×3×3×3×3×3=36

3729
3243
381
327
39
33
1

(iv) 3125 =5×5×5×5×5=55

53125
5625
5125
525
55
1
  • Identify the greater number, wherever possible, in each of the following ? (i) 43 or 34 (ii) 53 or 35 (iii) 28 or 82 (iv) 1002 or 2100 (v) 210 or 102 Sol. (i) 43=4×4×4=64 34=3×3×3×3=81 Since 64<81 Thus, 34 is greater than 43. (ii) 53=5×5×5=125 35=3×3×3×3×3=243 Since, 125<243 Thus, 35 is greater than 53. (iii) 28=2×2×2×2×2×2×2×2=256 82=8×8=64 Since, 256>64 Thus, 28 is greater than 82. (iv) 1002=100×100=10,000 2100=2×2×2×2×2×…14 times ×…×2 =16,384×.....×2 Since, 10,000<16,384× ×2 Thus, 2100 is greater than 1002. (v) 210=2×2×2×2×2×2×2×2×2×2 =1,024 102=10×10=100 Since, 1024>100 Thus, 210>102
  • Express each of the following as product of powers of their prime factors : (i) 648 (ii) 405 (iii) 540 (iv) 3,600 Sol. (i) 648=23×34
2648
2324
2162
381
327
39
33
1

(ii) 405=5×34

3405
3135
345
315
55
1

(iii) 540=22×33×5

2540
2270
3135
345
315
55
1

(iv) 3,600=24×32×52

23600
21800
2900
2450
3225
375
525
55
1
  • Simplify : (i) 2×103 (ii) 72×22 (iii) 23×5 (iv) 3×44 (v) 0×102 (vi) 52×33 (vii) 24×32 (viii) 32×104 Sol. (i) 2×103=2×10×10×10=2,000 (ii) 72×22=7×7×2×2=196 (iii) 23×5=2×2×2×5=40 (iv) 3×44=3×4×4×4×4=768 (v) 0×102=0×10×10=0 (vi) 52×33=5×5×3×3×3=675 (vii) 24×32=2×2×2×2×3×3=144 (viii) 32×104=3×3×10×10×10×10=90,000
  • Simplify : (i) (−4)3 (ii) (−3)×(−2)3 (iii) (−3)2×(−5)2 (iv) (−2)3×(−10)3 Sol. (i) (−4)3=(−4)×(−4)×(−4)=−64 (ii) (−3)×(−2)3=(−3)×(−2)×(−2)×(−2)=24 (iii) (−3)2×(−5)2=(−3)×(−3)×(−5)×(−5)=225 (iv) (−2)3×(−10)3 =(−2)×(−2)×(−2)×(−10)×(−10)×(−10) =8,000
  • Compare the following numbers : (i) 2.7×1012;1.5×108 (ii) 4×1014;3×1017 Sol. (i) 2.7×1012 and 1.5×108 On comparing the exponents of base 10 , 2.7×1012>1.5×108 (ii) 4×1014 and 3×1017 On comparing the exponents of base 10 , 4×1014<3×1017

Exercise: 11.2

  • Using laws of exponents, simplify and write the answer in exponential form : (i) 32×34×38 (ii) 615÷610 (iii) a3×a2 (iv) 7×72 (v) (52)3÷53 (vi) 25×55 (vii) a4×b4 (viii) (34)3 (ix) (220÷215)×23 (x) 8t÷82 Sol. (i) 32×34×38 =3(2+4+8)=314[∵am×an=am+n] (ii) 615÷610=615−10=65[∵am÷an=am−n] (iii) a3×a2=a3+2=a5[∵am×an=am+n] (iv) 7x×72=7x+2[∵am×an=am+n] (v) (52)3÷53=52×3÷53[∵(am)n=am×n] =56÷53=56−3=53[∵am÷an=am−n] (vi) 25×55=(2×5)5=105[∵am×bm=(a×b)m] (vii) a4×b4=(a×b)4[∵am×bm=(a×b)m] (viii) (34)3=34×3=312[∵(am)n=am×n] (ix) (220÷215)×23

=(220−15)×23[∵am÷an=am−n]=25×23=25+3=28[∵am×an=am+n] (x) 8t÷82=8t−2[∵am÷an=am−n]

  • Simplify and express each of the following in exponential form : (i) 3×3223×34×4​ (ii) [(52)3×54]÷57 (iii) 254÷53 (iv) 21×1133×72×118​ (v) 34×3337​ (vi) 20+30+40 (vii) 20×30×40 (viii) (30+20)×50 (ix) 43×a328×a5​ (x) (a3a5​)×a8 (xi) 45×a5b245×a8b3​ (xii) (23×2)2 Sol. (i) 3×3223×34×4​=3×2523×34×22​=3×2523+2×34​ [∵am×an=am+n] =3×2525×34​=25−5×34−1[∵am÷an=am−n] =20×33=1×33=33 (ii) [(52)3×54]÷57 =[56×54]÷57[∵(am)n=am×n]=[56+4]÷57=510÷57[∵am××an=am+n]=510−7=53[∵am÷an=am−n] (iii) 254÷53 =(52)4÷53=58÷53[∵(am)n=am×n] =58−3=55[∵am÷an=am−n] (iv) 21×1133×72×118​=3×7×1133×72×118​ =31−1×72−1×118−3[∵am÷an=am−n] =30×71×115=7×115

Simplify and express

  • =37−7=30=1[∵am÷an=am−n] (vi) 20+30+40=1+1+1=3[∵a0=1] (vii) 20×30×40=1×1×1=1[∵a0=1] (viii) (30+20)×50=(1+1)×1 =2×1=2[∵a0=1] (ix) 43×a328×a5​=(22)3×a328×a5​=26×a328×a5​ [∵(am)n=am×n] =28−6×a5−3=22×a2[∵am÷an=am−n] =(2a)2[∵am×bm=(a×b)m] (x) (a3a5​)×a8=(a5−3)×a8=a2×a8 [∵am÷an=am−n] =a2+8=a10[∵am×an=am+n] (xi) 45×a5 b245×a8 b3​=45−5×a8−5×b3−2=40×a3×b [∵am÷an=am−n] =1×a3×b=a3b[∵a0=1] (xii) (23×2)2=(23+1)2=(24)2 [∵am×an=am+n] =24×2=28[∵(am)n=am×n]
  • Say true or false and justify your answer : (i) 10×1011=10011 (ii) 23>52 (iii) 23×32=65 (iv) 30=(1000)0 Sol. (i) 10×1011=10011 L.H.S. 101+11=1012 and R.H.S. (102)11=1022 Since, L.H.S. = R.H.S. Therefore, it is false. (ii) 23>52 L.H.S. 23=8 and R.H.S. 52=25 Since, L.H.S. is not greater than R.H.S. Therefore, it is false. (iii) 23×32=65 L.H.S. 23×32=8×9=72 and R.H.S. 65=7,776 Since, L.H.S. = R.H.S. Therefore, it is false. (iv) 30=(1000)0 L.H.S. 30=1 and R.H.S. (1000)0=1 Since, L.H.S. = R.H.S. Therefore, it is true.
  • Express each of the following as a product of prime factors only in exponential form : (i) 108×192 (ii) 270 (iii) 729×64 (iv) 768 Sol. (i) 108×192 =(22×33)×(26×3)=22+6×33+1=28×34
2108
254
327
39
33
1
2192
296
248
224
212
26
33
1

(ii) 270=2×33×5

2270
3135
345
315
55
1

(iii) 729×64=36×26

3729
3243
381
327
39
33
1
264
232
216
28
24
22
1

(iv) 768=28×3

2768
2384
2192
296
248
224
212
26
33
1
  • Simplify : (i) 83×7(25)2×73​ (ii) 103×t425×52×t8​ (iii) 57×6535×105×25​ Sol. (i) 83×7(25)2×73​=(23)3×725×2×73​=29×7210×73​ =210−9×73−1=2×72=2×49=98 (ii) 103×t425×52×t8​=(5×2)3×t452×52×t8​ =23×5352+2×t8−4​=23×5354×t4​ =2354−3×t4​=85t4​ (iii) 57×6535×105×25​=57×(2×3)535×(2×5)5×52​ =57×25×3535×25×55×52​=57×25×3535×25×55+2​=57×25×3535×25×57​=25−5×35−5×57−7=20×30×50=1×1×1=1

Exercise: 11.3

  • Write the following numbers in the expanded forms : 279404, 3006194, 2806196, 120719, 20068 Sol. (i) 2,79,404 2,00,000+70,000+9,000+400+0+4=2×100000+7×10000+9×1000+4×100+0×10+4×1=2×105+7×104+9×103+4×102+0×101+4×100 (ii) 30,06,194 =30,00,000+0+0+6,000+100+90+4=3×1000000+0×100000+0×10000+6×1000+1×100+9×10+4×1=3×106+0×105+0×104+6×103+1×102+9×10+4×100 (iii) 28,06,196 =20,00,000+8,00,000+0+6,000+100+90+6=2×1000000+8×100000+0×10000+6×1000+1×100+9×10+6×1=2×106+8×105+0×104+6×103+1×102+9×10+6×100 (iv) 1,20,719 =1,00,000+20,000+0+700+10+9 =1×100000+2×10000+0×1000 +7×100+1×10+9×1 =1×105+2×104+0×103+7×102 +1×101+9×100 (v) 20,068=20,000+0+0+60+8 =2×10000+0×1000+0×100+6 ×10+8×1 =2×104+0×103+0×102+6×101 +8×100
  • Find the number from each of the following expanded forms: (a) 8×104+6×103+0×102+4×101+5×100 (b) 4×105+5×103+3×102+2×100 (c) 3×104+7×102+5×100 (d) 9×105+2×102+3×101 Sol. (a) 8×104+6×103+0×102+4×101+ 5×100 =8×10000+6×1000+0×100+4 ×10+5×1 =80000+6000+0+40+5 =86,045 (b) 4×105+5×103+3×102+2×100 =4×100000+0×10000+5×1000 +3×100+0×10+2×1 =400000+0+5000+300+0+2 =4,05,302 (c) 3×104+7×102+5×100 =3×10000+0×1000+7×100+0 ×10+5×1 =30000+0+700+0+5 =30,705 (d) 9×105+2×102+3×101 =9×100000+0×10000+0×1000 +2×100+3×10+0×1 =900000+0+0+200+30+0 =9,00,230
  • Express the following numbers in standard form : (i) 5,00,00,000 (ii) 70,00,000 (iii) 3,18,65,00,000 (iv) 3,90,878 (v) 39087.8 (vi) 3908.78 Sol. (i) 5,00,00,000=5×1,00,00,000=5×107 (ii) 70,00,000=7×10,00,000=7×106 (iii) 3,18,65,00,000=31865×100000 =3.1865×10000×100000 =3.1865×109 (iv) 3,90,878=3.90878×100000 =3.90878×105 (v) 39087.8=3.90878×10000 =3.90878×104 (vi) 3908.78=3.90878×1000=3.90878×103
  • Express the number appearing in the following statements in standard form. (a) The distance between Earth and Moon is 384,000,000 m. (b) Speed of light in vacuum is 300,000,000 m/s. (c) Diameter of the Earth is 1,27,56,000 m. (d) Diameter of the Sun is 1,400,000,000 m. (e) In a galaxy there are on an average 100,000,000,000 stars. (f) The universe is estimated to be about 12,000,000,000 years old. (g) The distance of Sun from the centre of Milky Way Galaxy is estimated to be 300,000,000,000,000,000,000 m. (h) 60,230,000,000,000,000,000,000 molecules are contained in a drop of water weighing 1.8 gm . (i) The earth has 1,353,000,000 cubic km of sea water (j) The population of India was about 1,027,000,000 in March, 2001. Sol. (a) The distance between Earth and Moon =384,000,000 m =3.84×108 m (b) Speed of light in vacuum =300,000,000 m/s =3×100000000 m/s =3×108 m/s (c) Diameter of the Earth =1,27,56,000 m =12756×1000 m =1.2756×10000×1000 m =1.2756×107 m (d) Diameter of the Sun =1,400,000,000 m =14×100,000,000 m =1.4×10×1,00,000,000 m =1.4×109 m (e) Average of Stars =100,000,000,000 =1×100,000,000,000 =1×1011 (f) Years of Universe =12,000,000,000 years =12×1,000,000,000 years =1.2×10×1,000,000,000 years =1.2×1010 years (g) Distance of the Sun from the centre of the Milky Way Galaxy =300,000,000,000,000,000,000 m =3×100,000,000,000,000,000,000 m =3×1020 m (h) Number of molecules in a drop of water weighing 1.8 gm =60,230,000,000,000,000,000,000 =6023×10,000,000,000,000,000,000 =6.023×1000×10,000,000,000,000,000,000 =6.023×1022 (i) The Earth has sea water =1,353,000,000 km3 =1,353×1000000 km3 =1.353×1000×1000,000 km3 =1.353×109 km3 (j) The population of India = 1,027,000,000 =1027×1000000 =1.027×1000×1000000 =1.027×109

4.0What Will Students Learn in Chapter 11: Exponents and Powers?

  • Introduction to representation of large numbers in a simpler form by using exponentiation.
  • The fundamental operation principles and laws of exponents including, multiplication, division of powers, raising power of a power and more.
  • Defining what negative exponents mean and the connection between exponents and reciprocals.
  • How to demonstrate very large or very small numbers using powers of 10.
  • Several examples of using exponents in real life based on mathematical and scientific problems.

NCERT Solutions for Class 7 Maths Other Chapters:-

Chapter 1: Integers

Chapter 2: Fractions and Decimals

Chapter 3: Data Handling

Chapter 4: Simple Equations

Chapter 5: Lines and Angles

Chapter 6: The Triangle and its Properties

Chapter 7: Comparing Quantities

Chapter 8: Rational Numbers

Chapter 9: Perimeter and Area

Chapter 10: Algebraic Expressions

Chapter 11: Exponents and Powers

Chapter 12: Symmetry

Chapter 13: Visualising Solid Shapes


CBSE Notes for Class 7 Maths - All Chapters:-

Class 7 Maths Chapter 1 - Integers Notes

Class 7 Maths Chapter 2 - Fractions and Decimals Notes

Class 7 Maths Chapter 3 - Data Handling Notes

Class 7 Maths Chapter 4 - Simple Equations Notes

Class 7 Maths Chapter 5 - Lines And Angles Notes

Class 7 Maths Chapter 6 - The Triangles and its PropertiesNotes

Class 7 Maths Chapter 7 - Comparing Quantities Notes

Class 7 Maths Chapter 8 - Rational Numbers Notes

Class 7 Maths Chapter 9 - Perimeter And Area Notes

Class 7 Maths Chapter 10 - Algebraic Expressions Notes

Class 7 Maths Chapter 11 - Exponents And Powers Notes

Class 7 Maths Chapter 12 - Symmetry Notes

Class 7 Maths Chapter 13 - Visualising Solid Shapes Notes

Frequently Asked Questions

In Class 7 Maths Chapter 11, the significance of negative exponents lies in their ability to represent reciprocals concisely, allowing for easier simplification of expressions. They help students connect positive exponents to division concepts, enhancing their overall understanding of exponents. Additionally, negative exponents are crucial in scientific notation for expressing very small values, preparing students for future math and science topics.

The laws of exponents make calculations involving large numbers much simpler and are essential for higher-level mathematics, including algebra, calculus, and beyond.

Understanding exponents is important in fields like physics, finance, and computer science, where exponential growth, decay, and large numbers are commonly encountered.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • NEET Mock Test
    • Olympiad
    • NEET 2025 Answer Key
    • JEE Advanced 2025 Answer Key
    • JEE Advanced Rank Predictor

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO