• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Offline Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • NEW
    • JEE MAIN 2025
    • NEET
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • ALLEN e-Store
    • AOSAT
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
JEE MathsJEE Physics
Home
JEE Chemistry
Activation energy

Activation Energy

Activation energy is the minimum push needed to start a chemical reaction. Imagine it like a hill that the reactants have to climb before they can turn into products. It's the energy required to kick-start the transformation from reactants to products. Without this push, the reaction won't happen, no matter how much the reactants bump into each other.

Activation energy definition involves the minimum amount of energy needed to break the bonds in the reactant molecules so that the reaction can proceed to form the products. This energy barrier must be overcome for the reaction to occur, even if the overall reaction releases energy. The higher the activation energy, the slower the reaction rate because fewer molecules possess the necessary energy to overcome this barrier. Thus in this section, We will discuss what is activation energy and What factors can affect it, in Detail.

1.0Activation Energy Definition

To understand a chemical reaction, one must understand the meaning of the activation energy, as it is the key to predicting how the reaction will proceed under different conditions. It represents the minimal energy required to stimulate or empower molecules or atoms, enabling them to engage in a chemical reaction or undergo transformation.

2.0Activation Energy Unit

The SI unit of activation energy is typically measured in joules (J) or kilojoules per mole (kJ/mol) in the context of chemical reactions. In some cases, especially in older literature or specific fields, other units like kilocalories per mole (kcal/mol) or electron volts (eV) might also be used to express activation energies.

3.0Activation Energy Examples and Graphs 

In this section we will discuss different kinds of graph of activation energy and how we can determine it for various reactions.Further we will study examples of activation energy

Reaction Graphs

The reaction’s activation energy graph typically depicts the relationship between the progress of a chemical reaction and the energy involved.

Activation Energy graph For Exothermic reaction

(Ea)f < (Ea)b

(ROR)f > (ROR)b

△H = (Ea)f – (Ea)b

△H = -ve value

(Ea)f = △H Only one can be possible for Exothermic Reaction

(Ea)f > △H

Activation Energy


Activation Energy Graph for Endothermic Reaction

Activation Energy


(Ea)f > (Ea)b

(ROR)f < (ROR)b

△H = (Ea)b – (Ea)f

△H = +ve value

(Ea)f > △H (Always )


  1. Ea(f) = Activation energy for forward reaction
  2. Ea(b) = Activation energy for backward reaction                               

If not specified in questions then consider Ea for forward reaction. 

4.0Factors Affecting Activation Energy

In Chemistry, activation energy of a reaction can be determined by some key factors, Here we will discuss about them in brief- 

  1. Nature of reactant: For different reactants, the number of bonds and bond energies are different, therefore activation energy will also be different.

Note- Reactions which have less Ea, take place at a faster rate.

  1. Presence of catalyst: Catalysts provide an alternative path of reaction mechanism for the reaction. Further we will discuss how catalyst and activation energy are related to each other and how catalysts affect activation energy.


Positive Catalysts- A positive catalyst speeds up a reaction by lowering the activation energy needed for it to occur, allowing it to happen more easily or quickly.

  • In the presence of a positive catalyst threshold energy decreases, activation energy decreases and rate of reaction increases.

Negative Catalysts- A negative catalyst impedes a reaction by raising the activation energy needed, causing the reaction to proceed slower than usual.

  • In the presence of a negative catalyst (inhibitor) threshold energy increases, activation energy increases, rate of reaction decreases.

Activation Energy

5.0Activation Energy and Enzymes

Let’s understand the relation between activation energy and enzymes. Since we know, Enzymes are biological catalysts that speed up chemical reactions in living organisms. 

  • They achieve this by lowering the activation energy required for a reaction to occur. 
  • Activation energy of a reaction  is the energy needed to start a chemical reaction, and enzymes facilitate reactions by reducing this energy barrier. 
  • Essentially, enzymes make it easier for reactions to happen by providing an alternate pathway that requires less energy, thus accelerating the process without being consumed or changed themselves.

Activation Energy and Enzymes



Table of Contents


  • 1.0Activation Energy Definition
  • 2.0Activation Energy Unit
  • 3.0Activation Energy Examples and Graphs 
  • 3.1Reaction Graphs
  • 3.2Activation Energy graph For Exothermic reaction
  • 3.3Activation Energy Graph for Endothermic Reaction
  • 4.0Factors Affecting Activation Energy
  • 5.0Activation Energy and Enzymes

Frequently Asked Questions

Activation energy of a chemical reaction can be determined by experiment. It involves studying the reaction rate at different temperatures using the Arrhenius equation or by analyzing the reaction pathway using computational methods.

No, activation energy varies for different reactions. It depends on the nature of the reactants, the specific chemical bonds involved, and the reaction conditions.

Meaning of Activation energy is basically known as the minimum amount of energy required for a chemical reaction to start.

Activation energy equation also known as Arrhenius equation. Arrhenius equation is the equation that relates the rate constant of a chemical reaction to the activation energy : k=A e^((-E_a)/(R T)); Where - k is the rate constant of the reaction. A is the pre-exponential factor or frequency factor, which represents the frequency of collisions and orientation factor of reacting molecules. Ea​ is the activation energy, which is the minimum energy required for a reaction to occur. R is the gas constant (8.314 J/(mol·K)). T is the temperature in Kelvin.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State

Related Articles:-

Ionization Energy

Ionization energy is the amount of energy needed to remove an electron from an isolated gaseous neutral atom.

Electronic Displacement Effects (GOC)

Electronic Displacement Effects provide a deep understanding of how and why organic molecules behave the way they do in various chemical reactions and environments.

IUPAC Nomenclature and Common Names

The IUPAC system is the widely recognized and utilized system for naming chemical compounds, especially...

Chemistry In Every Day Life

Medicines, synthetic fibres, vibrant colours, and even our bodies are all chemistry products. This unit explores...

Electrochemistry

Electrochemistry is a branch of chemistry that deals with the study of the relationship between electricity and chemical reactions.

Atomic Structure

Explore the atomic structure along with different models of atomic structure with their applications and limitations...

Chemical Kinetics

Chemical kinetics involves studying how quickly this reaction occurs and what factors impact its speed.

Carbocation

A carbocation is a positively charged carbon ion that has six electrons in its valence shell instead of the usual eight.

  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • NEET Mock Test
    • Olympiad
    • NEET 2025 Answer Key

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO