• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
  • NEW
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
Home
JEE Maths
Important Integration Formulas for JEE

Important Integration Formulas for Jee

In calculus, integration plays a crucial role, especially in JEE exams. Mastering the fundamental integration formulas ensures that students can solve complex problems efficiently. This blog covers a list of all integral formulas that are essential for JEE, along with their examples to help you understand their applications better.

1.0Introduction to Integration

Integration is the inverse process of differentiation. If a F(x) is the integral of f(x), then F'(x) = f(x). It helps in finding the area under a curve, volumes, and solving differential equations, which are important in physics and mathematics.

2.0List of All Integral Formulas

Standard Formulae

  1. ∫(ax+b)ndx=a(n+1)(ax+b)n+1​+C;n=−1
  2. ∫ax+bdx​=a1​ln∣ax+b∣+C
  3. ∫eax+bdx=a1​eax+b+C
  4. ∫apx+qdx=p1​lnaapx+q​+C,(a>0)
  5. ∫sin(ax+b)dx=−a1​cos(ax+b)+C
  6. ∫cos(ax+b)dx=a1​sin(ax+b)+C
  7. ∫tan(ax+b)dx=a1​ln∣sec(ax+b)∣+C
  8. ∫cot(ax+b)dx=a1​ln∣sin(ax+b)∣+C
  9. ∫sec2(ax+b)dx=a1​tan(ax+b)+C
  10. ∫cosec2(ax+b)dx=−a1​cot(ax+b)+C
  11. ∫cosec(ax+b)⋅cot(ax+b)dx=−a1​cosec(ax+b)+C
  12. ∫sec(ax+b)⋅tan(ax+b)dx=a1​sec(ax+b)+C
  13. ∫secxdx=ln∣secx+tanx∣+C=ln​tan(4π​+2x​)​+C
  14. ∫cosecxdx=ln∣cosecx−cotx∣+C=ln​tan2x​​+C=−ln∣cosecx+cotx∣+C
  15. ∫a2−x2​dx​=sin−1ax​+C
  16. ∫a2+x2dx​=a1​tan−1ax​+C
  17. ∫xx2−a2​dx​=a1​sec−1ax​+C
  18. ∫x2+a2​dx​=ln[x+x2+a2​]+C
  19. ∫x2−a2​dx​=ln[x+x2−a2​]+C
  20. ∫a2−x2dx​=2a1​ln​a−xa+x​​+C
  21. ∫x2−a2dx​=2a1​ln​x+ax−a​​+C
  22. ∫a2−x2​dx=2x​a2−x2​+2a2​sin−1ax​+C
  23. ∫x2+a2​dx=2x​x2+a2​+2a2​ln(x+x2+a2​)+C
  24. ∫x2−a2​dx=2x​x2−a2​−2a2​ln(x+x2−a2​)+C
  25. ∫eax⋅sinbxdx=a2+b2eax​(asinbx−bcosbx)+C=a2+b2​eax​sin(bx−tan−1ab​)+C
  26. ∫eax⋅cosbxdx=a2+b2eax​(acosbx+bsinbx)+C=a2+b2​eax​cos(bx−tan−1ab​)+C

Methods of Integration

Substitution or Change of Independent Variable

If ϕ(x) is a continuous differentiable function, then to evaluate integrals of the form ∫f(ϕ(x))ϕ′(x)dx, we substitute ϕ(x)=t and ϕ′(x)dx=dt .

Hence I=∫f(ϕ(x))ϕ′(x)dx reduces to ∫f(t)dt.

Integral of the form 

  • ∫ax2+bx+cdx​,∫ax2+bx+c​dx​

Express a x2+bx+c in the form of a perfect square & then apply the standard results.

  • ∫ax2+bx+cpx+q​dx,∫ax2+bx+c​px+q​dx

Express p x+q=l (differential coefficient of denominator ) +m .

Integration by Part: 

∫u⋅vdx=u∫vdx−∫[dxdu​⋅∫vdx]dx

where u & v are differentiable functions and are commonly designated as first & second function respectively. 

Note:  While using integration by parts, choose u & v such that 

(i) ∫vdx &

(ii) ∫[dxdu​⋅∫vdx]dx​  are simple to integrate.

This is generally obtained by choosing the first function refers to the function that appears first in the acronym ILATE, which stands for:

  • I - Inverse function
  • L - Logarithmic function
  • A - Algebraic function
  • T - Trigonometric function
  • E - Exponential function.

This order is used to determine the sequence in which functions should be integrated when applying integration techniques.

Let

​I=∫f(x)⋅g(x)dx I II ​

=f(x)⋅∫g(x)dx−∫(f′(x))(∫g(x)dx)dx

=1st function×integralof2nd−∫( diff. coeff. of Ist)×( integral of 2nd)dx

Two Classic Integrands

(a) ∫ex(f(x)+f′(x))dx=exf(x)+c

(b) ∫(f(x)+xf′(x))dx=xf(x)+c

Integrals of the Type:

(i) ∫eax⋅sinbxdx=a2+b2eax​(asinbx−bcosbx)+c

(ii)∫eax⋅cosbxdx=a2+b2eax​(acosbx+bsinbx)+c

Integration of Rational Function                                   

(i) A rational function is defined as the quotient of two polynomials, expressed in the form

Q(x)P(x)​​, where P(x) and Q(x) are polynomials in x and Q(x) ≠ 0. If the degree of P(x) is less than the degree of Q(x), the rational function is classified as proper. Conversely, if the degree of P(x) is greater than or equal to the degree of Q(x), it is termed improper. An improper rational function can be transformed into a proper rational function through the process of long division.

Thus, if a rational function is improper, it can be expressed as:

Q(x)P(x)​=H(x)+Q(x)R(x)​​,

where H(x) is a polynomial and Q(x)R(x)​​ is a proper rational function. To simplify the integration of such functions, we use a technique known as partial fraction decomposition, which breaks the integrand into a sum of simpler rational functions. Once decomposed, the integral can be evaluated easily using standard integration methods.

S. No.

Form of the rational function

Form of the partial fraction

1.

(x−a)(x−b)(x−c)px2+qx+r​

x−aA​+x−bB​+x−cC​

2.

(x−a)2(x−b)px2+qx+r​

x−aA​+(x−a)2B​+x−bC​

3.

(x−a)(x2+bx+c)px2+qx+r​

x−aA​+x2+bx+cBx+C​


where x2+bx+c cannot be factorised further

Manipulating Integrands

(i) ∫x(xn+1)dx​, n∈N, take xn common & put 1+x−n=t.

(ii) ∫x2(xn+1)(n−1)/ndx​,n∈N,  take xn common & put 1+x−n=tn

(iii) ∫xn(1+xn)1/ndx​, take xn common and put 1+x−n=tn . 

Integral of the Form: 

  • ∫a+bsin2xdx​ OR ∫a+bcos2xdx​

OR ∫asin2x+bsinxcosx+ccos2xdx​ 

Divide  Nr &  Dr by x  &  put tanx=t.

  • ∫a+bsinxdx​OR∫a+bcosxdx​OR∫a+bsinx+ccosxdx​

Convert sines and cosines into their respective tangents of half the angles, put tan2x​=t.

  • Integrals of the form ∫x4+Kx2+1x2+1​dx OR∫x4+Kx2+1x2−1​dx , where K is any constant.

Divide Nr & Dr by x2 then put x−x1​=tORx+x1​=t respectively & proceed.

Integration of Irrational functions:

(i) ∫(ax+b)px+q​dx​and∫(ax2+bx+c)px+q​dx​; put px+q=t2

(ii) ∫(ax+b)px2+qx+r​dx​;∫(ax2+b)px2+q​dx​,putx=t1​

3.0Definite Integration

A definite integral is denoted by ∫ab​f(x)dx which represents the algebraic area bounded by the curve y = f(x), the ordinates x = a, x = b and the x-axis.

Properties of Definite Integral

(a) ∫ab​f(x)dx=∫ab​f(t)dt⇒∫ab​f(x)dx does not depend upon x. It is a numerical quantity.

(b) ∫ab​f(x)dx=−∫ba​f(x)dx

(c) ∫ab​f(x)dx=−∫ac​f(x)dx+∫cb​f(x)dx, where c may lie inside or outside the interval [a, b]. This property to be used when f is piecewise continuous in (a, b). 

(d) ∫−aa​f(x)dx=∫0a​[f(x)+f(−x)]dx=[02∫0a​f(x)dx​; if f(x) is an odd function ; if f(x) is an even function ​

(e) ∫ab​f(x)dx=∫ab​f(a+b−x)dx,Inparticular∫0a​f(x)dx=∫0a​f(a−x)dx

(f) ∫02a​f(x)dx=∫0a​f(x)dx+∫0a​f(2a−x)dx=[2∫0a​f(x)dx0​; if f(2a−x)=f(x); if f(2a−x)=−f(x)​

(g) ∫0nT​f(x)dx=n∫0T​f(x)dx,(n∈I); where ‘T’ is the period of the function i.e. f(T + x) = f(x)

Note that : ∫xT+x​f(t)dt will be independent of x and equal to ∫0T​f(t)dt 

(h) ∫a+nTb+nT​f(x)dx=∫ab​f(x)dx where f(x) is periodic with period T & n ∈ I.

(i) ∫mana​f(x)dx=(n−m)∫0a​f(x)dx,(n,m∈I)if(x) is periodic with period ‘a’.

Some standard results

(i) ∫0π/2​sinnx+cosnxsinnx​dx=∫0π/2​cosnx+sinnxcosnx​dx=4π​

(ii) ∫0π/2​logtanxdx=0

(iii) ∫0π/4​log(1+tanx)dx=8π​ln2

(iv) ∫0π/2​ln(sinx)dx=∫0π/2​ln(cosx)dx=2−π​ln2

(v) ∫ab​f(x)+f(a+b−x)f(x)​dx=2b−a​

(vi) ∫ab​{x}dx=2b−a​,a, b∈I

(vii) ∫ab​x∣x∣​dx=∣b∣−∣a∣

Walli’s Theorem

(a) ∫0π/2​sinnxdx=∫0π/2​cosnxdx=n(n−2)…..(1 or 2)(n−1)(n−3)…..(1 or 2)​K

where K={π/21​ if n is even  if n is odd ​

(b) ∫0π/2​sinnx⋅cosmxdx=(m+n)(m+n−2)(m+n−4)…..1 or 2[(n−1)(n−3)(n−5)…..1 or 2][(m−1)(m−3)….…1 or 2]​K

Where K={2π​ if both m and n are even (m,n∈N)1 otherwise ​

Leibnitz Theorem

If F(x)=∫g(x)h(x)​f(t)dtthenF′(x)=h′(x)f(h(x))−g′(x)f(g(x)) 

Where h(x) and g(x) are differentiable function of x.

Estimation of D.I. & General Inequality

If f(x) is continuous in [a, b] and it’s range in this interval is [m, M], then 

m(b−a)≤∫ab​f(x)dx≤M(b−a)

Definite Integral as Limit of a Sum:

∫ab​f(x)dx=Limn→∞​h[f(a)+f(a+h)+f(a+2h)+….+f(a+n−1​h)]

Limn→∞​h∑r=0n−1​f(a+rh), where b – a = nh

If a = 0 & b = 1 then, Limn→∞​h∑r=0n−1​f(rh)=∫01​f(x)dx;wherenh=1OrLimn→∞​(n1​)∑r=0n−1​f(nr​)=∫01​f(x)dx.

4.0Solved Example of important Integral Formula

Example 1: Evaluate ∫(x4+3x2+1)tan−1(x+x1​)(x2−1)dx​

Solution:

The given integral can be written as

I=∫[(x+x1​)2+1]tan−1(x+x1​)(1−x21​)dx​

Let (x+x1​)=t. Differentiating we get  (1−x21​)dx=dt

Hence I=∫(t2+1)tan−1tdt​

Now make one more substitution tan−1t=u. Then t2+1dt​=duandI=∫udu​=ln∣u∣+C

Returning to t, and then to x, we have

Ans. I=ln​tan−1t​+C=ln​tan−1(x+x1​)​+C

Example 2: Evaluate ∫1+x​1−x​​​⋅x1​dx 

Solution:

Put x=cos2θ⇒dx=−2sinθcosθdθ

⇒I=∫1+cosθ1−cosθ​​⋅cos2θ1​(−2sinθcosθ)dθ=−∫2tan2θ​tanθdθ

=−4∫cosθsin2(θ/2)​dθ=−2∫cosθ1−cosθ​dθ=−2ln∣secθ+tanθ∣+2θ+C

=−2ln​x​1+1−x​​​+2cos−1x​+C

Example 3: Evaluate ∫sin2xcos4xdx

Solution:

∫sin2xcos4xdx=∫(21−cos2x​)(2cos2x+1​)2dx

=∫81​(1−cos2x)(cos22x+2cos2x+1)dx

=81​∫(cos22x+2cos2x+1−cos32x−2cos22x−cos2x)dx

=81​∫(−cos32x−cos22x+cos2x+1)dx

=−81​∫(4cos6x+3cos2x​+21+cos4x​−cos2x−1)dx

=−321​[6sin6x​+23sin2x​]−161​x−64sin4x​+16sin2x​+8x​+C

=−192sin6x​−64sin4x​+641​sin2x+16x​+C

Example 4: Evaluate ∫(x+2)(x2+1)x4​dx

Solution:

(x+2)(x2+1)x4​=(x−2)+(x+2)(x2+1)3x2+4​

Now,

(x+2)(x2+1)3x2+4​=5(x+2)16​+x2+1−51​x+52​​

So, (x+2)(x2+1)x4​=x−2+5(x+2)16​+x2+1−51​x+52​​

Now, ∫(x−2)+5(x+2)16​+x2+1−51​x+52​​)dx

Ans. =2x2​−2x+52​tan−1x+516​ln∣x+2∣−101​ln(x2+1)+C

Example 5: Evaluate

∫sin3x{sin5x+cos5x}53​cos4xdx​

Solution:

I=∫sin3x{sin5x+cos5x}53​cos4x​dx

=∫sin6x{1+cot5x}53​cos4x​dx

=∫(1+cot5x)3/5cot4xcosec2xdx​

 Put 1+cot5x=t⇒5cot4xcoses2xdx=−dt

Ans. =−51​∫t3/5dt​=−21​t2/5+C=−21​(1+cot5x)2/5+C

Example 6: Evaluate ∫02​(17+8x−4x2)[e6(1−x)+1]dx​

Solution:

Let I=∫02​(17+8x−4x2)[e6(1−x)+1]dx​

Also I=(17+8x−4x2)[e−6(1−x)+1]dx​[∫0a​f(x)dx=∫0a​f(a−x)dx]

Adding, we get 

2I=∫02​17+8x−4x21​(e6(1−x)+11​+e−6(1−x)+11​)dx

=∫02​17+8x−4x21​dx=−41​∫02​x2−2x−17/4dx​

=−41​∫02​(x−1)2−21/4dx​=−41​×2×221​​1​[log​x−1+221​​x−1−221​​​​]02​

=−421​1​[log​2x−2+21​∣2x−2−21​​​]02​

⇒I=−821​1​[log​2+21​2−21​​​−log​21​−22+21​​​]

=−421​1​[log​2+21​21​−2​​]

5.0Practice Question for Integration for JEE

  1. ∫[2cot2xcot22x−1​−cos8xcot4x]dx
  2. ∫(x(ln(x+1))x+1x​−ln(x+1)​)dx
  3. ∫cos2x1+tanx​dx​
  4. ∫cot2x​⋅cot3x​⋅cot6x​dx​
  5. ∫1+x2x2tan−1x​dx

Table of Contents


  • 1.0Introduction to Integration
  • 2.0List of All Integral Formulas
  • 2.1Standard Formulae
  • 2.2Methods of Integration
  • 2.3Integral of the form 
  • 2.4Integration by Part: 
  • 2.5Two Classic Integrands
  • 2.6Integrals of the Type:
  • 2.7Integration of Rational Function                                   
  • 2.8Manipulating Integrands
  • 2.9Integral of the Form: 
  • 2.10Integration of Irrational functions:
  • 3.0Definite Integration
  • 3.1Properties of Definite Integral
  • 3.2Some standard results
  • 3.3Walli’s Theorem
  • 3.4Leibnitz Theorem
  • 3.5Estimation of D.I. & General Inequality
  • 3.6Definite Integral as Limit of a Sum:
  • 4.0Solved Example of important Integral Formula
  • 5.0Practice Question for Integration for JEE

Frequently Asked Questions

Integration is a crucial part of calculus in JEE Mathematics. It forms the basis for solving questions on areas, volumes, differential equations, and motion in physics. Many JEE problems require a deep understanding of definite and indefinite integrals.

Practice a variety of problems from previous year papers and mock tests. Learn to identify patterns in integrals, such as standard forms involving or trigonometric identities. Revise the formulas regularly to improve recall speed. Solve questions involving definite integrals, as they often appear in JEE exams.

I.A. Maron – Problems in Calculus of One Variable R.D. Sharma – Mathematics for Class 12 Cengage – Calculus: JEE Main & Advanced Arihant – Integral Calculus

Join ALLEN!

(Session 2026 - 27)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET Previous Year Papers
    • NEET Sample Papers
    • JEE Main Sample Papers
    • CBSE Sample Papers

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO