• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Offline Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • NEW
    • JEE MAIN 2025
    • NEET
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • ALLEN e-Store
    • AOSAT
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
JEE PhysicsJEE Chemistry
Home
JEE Maths
Integral

Integral

Integral calculus is a fundamental branch of mathematics that extends our understanding of accumulation, areas under curves, and much more. Whether you're diving into basic integrals or exploring the complexities of double and triple integrals, mastering this subject is crucial for success in various scientific and engineering fields. This blog will guide you through the key concepts and applications of integral calculus, providing clear definitions, formulas, solved examples, and practice problems.

1.0Integration Definition

In calculus, an Integral is a tool used to add up tiny pieces to find the total area or volume of a continuous shape. The process of calculating an integral is called integration, and it was once known as quadrature. When we estimate an integral using methods other than exact calculations, it's called numerical integration. There are two main types of integrals: definite integrals, which give a specific number representing the algebraic area or volume between two points, and indefinite integrals, which represent a general formula plus a constant.

2.0Indefinite Integral

The indefinite integral, also known as the antiderivative, represents a family of functions whose derivative is the given function. It includes an arbitrary constant C, since differentiation of a constant is zero. The notation for an indefinite integral is:

∫f(x)dx=F(x)+C

where F(x) is the antiderivative of f(x).

3.0Definite Integral

The definite integral calculates the net area under a curve within a specified interval [a, b]. Unlike the indefinite integral, it produces a specific numerical value. The notation for a definite integral is:

∫ab​f(x)dx

This value can be interpreted as the total accumulation of the quantity represented by f(x) from x = a to x = b.

4.0Integration Formulas

  • ∫(ax+b)ndx=a(n+1)(ax+b)n+1​+C;n=−1
  • ∫ax+bdx​=a1​ln∣ax+b∣+C
  • ∫eax+bdx=a1​eax+b+C  
  • ∫apx+qdx=p1​lnaapx+q​+C,(a>0)
  • ∫sin(ax+b)dx=−a1​cos(ax+b)+C
  • ∫cos(ax+b)dx=a1​sin(ax+b)+C
  • ∫tan(ax+b)dx=a1​ln∣sec(ax+b)∣+C
  • ∫cot(ax+b)dx=a1​ln∣sin(ax+b)∣+C
  • ∫sec2(ax+b)dx=a1​tan(ax+b)+C
  • ∫cosec2(ax+b)dx=−a1​cot(ax+b)+C
  • ∫cosec(ax+b)⋅cot(ax+b)dx=−a1​cosec(ax+b)+C
  • ∫sec(ax+b)⋅tan(ax+b)dx=a1​sec(ax+b)+C
  • ∫secxdx=ln∣secx+tanx∣+C=ln​tan(4π​+2x​)​+C
  • ∫cosecxdx=ln∣cosecx−cotx∣+C=ln​tan2x​​+C=−ln∣cosecx+cotx∣+C
  • ∫a2−x2​dx​=sin−1ax​+C
  • ∫a2+x2dx​=a1​tan−1ax​+C
  •  ∫xx2−a2​dx​=a1​sec−1ax​+C
  • ∫x2+a2​dx​=ln[x+x2+a2​]+C
  • ∫x2−a2​dx​=ln[x+x2−a2​]+C 
  • ∫a2−x2dx​=2a1​ln​a−xa+x​​+C
  • ∫x2−a2dx​=2a1​ln​x+ax−a​​+C
  • ∫a2−x2​dx=2x​a2−x2​+2a2​sin−1ax​+C 
  • ∫x2+a2​dx=2x​x2+a2​+2a2​ln(x+x2+a2​)+C
  • ∫x2−a2​dx=2x​x2−a2​−2a2​ln(x+x2−a2​)+C 
  • ∫eax⋅sinbxdx=a2+b2eax​(asinbx−bcosbx)+C=a2+b2​eax​sin(bx−tan−1ab​)+C
  • ∫eax⋅cosbxdx=a2+b2eax​(acosbx+bsinbx)+C=a2+b2​eax​cos(bx−tan−1ab​)+C  

5.0Some definite Formulas are

1. Walli’s Theorem:

(a)  ∫0π/2​sinnxdx=∫0π/2​cosnxdx=n(n−2)…..(1 or 2)(n−1)(n−3)…..(1 or 2)​K

 where K={π/21​ if n is even  if n is odd ​

(b) ∫0π/2​sinnx⋅cosmxdx=(m+n)(m+n−2)(m+n−4)….1 or 2[(n−1)(n−3)(n−5)….1 or 2][(m−1)(m−3)….… or 2]​K

 Where K={2π​1​ if both m and n are even (m,n∈N) otherwise ​

6.0Double and Triple Integrals

Double and Triple Integrals extend the concept of single-variable integration to functions of two or three variables. These integrals are essential for calculating areas, volumes, and other quantities in multi-dimensional spaces.

Double Integrals

Double integrals are used to compute the volume under a surface in three-dimensional space or to find the area of a region in a plane. They are represented as:

∬D​f(x,y)dA

Here, D is the region of integration in the xy-plane, and dA represents a small element of area in this plane. The function f(x, y) is integrated over region D. 

Triple Integrals

Triple integrals are used to calculate the volume of a region in three-dimensional space or to integrate functions of three variables over a specified volume. They are represented as:

∭V​f(x,y,z)dV

Here, V is the region of integration in three-dimensional space, and dV represents a small volume element. The function f(x, y, z) is integrated over region V.

7.0Integral of Inverse Trigonometric Functions 

The integral of inverse trigonometric functions involves integrating functions that contain the inverse trigonometric functions like arcsin(x), arccos(x), arctan(x), and others. These integrals are essential in various fields of calculus and engineering due to their applications in solving problems involving angles and lengths.

Basic Formulas

Here are some fundamental formulas for the integral of inverse trigonometric functions:

  • ∫sin−1xdx=xsin−1x+1−x2​+C
  • ∫cos−1xdx=xcos−1x−1−x2​+C
  • ∫tan−1xdx=xtan−1x−21​ln​1+x2​+C
  • ∫cosec−1xdx=xcosec−1x+ln​x+x2−1​​+C
  • ∫cosec−1xdx=xcosec−1x+ln​x+x2−1​​+C
  • ∫cot−1xdx=x−0cot−1x+21​ln​1+x2​+C

8.0Solved Examples on Integrals

Example 1:

Evaluate (i) ∫8x+3dx​ (ii) ∫e8x+9dx 

Solution:

(i) 81​ln∣8x+9∣+C (ii)8e8x+9​+C 

Example 2:

∫cos3xdx

Solution:

∫43cosx+cos3x​dx[cos3x=4cos3x−3cosx]

⇒ ∫43cosx​dx+∫4cos3x​dx

⇒43sinx​+12sin3x​+C 

Example 3:

∫1−x2​sin−1x​dx

Solution:

 Let sin−1x=t 

∫1−x2​1​dx=dt

⇒∫tdt=2t2​+C⇒(sin−1x)2+C

Example 4:

∫3x3+2x+109x2+2​dx

Solution:

 Put 3x3+2x+10=t

(9x2+2)dx=dt

=∫tdt​=lnt+C

=ln(3x2+2x+10)+C

Example 5:

∫sin(xe2x)e2x(1+2x)​dx

Solution:

 Put, xe2x=t 

e2x+2xe2xdx=dt

e2x(1+2x)dx=dt

⇒ ∫sintdt​=∫cosectdt

ln​tan2t​​+C=ln​tan2xe2x​​+C

Example 6:

Evaluate ∫1+x​1−x​​​⋅x1​dx 

Solution:

 Put x=cos2θ⇒dx=−2sinθcosθdθ

⇒I=∫1+cosθ1−cosθ​​⋅cos2θ1​(−2sinθcosθ)dθ=−∫2tan2θ​tanθdθ

⇒I=∫1+cosθ1−cosθ​​⋅cos2θ1​(−2sinθcosθ)dθ=−∫2tan2θ​tanθdθ

=−4∫cosθsin2(θ/2)​dθ=−2∫cosθ1−cosθ​dθ=−2ln∣secθ+tanθ∣+2θ+C

=−2ln​x​1+1−x​​​+2cos−1x​+C

Example 7:

∫01​1−x2​sin−1x​dx

Solution:

sin−1x=t

1−x2​dx​=dt

at x = 0, t = 0

at x = 1, t=π/2

∫0π/2​tdt=(2t2​)0π/2​=8π2​

Example 8:

∫0ln2​1+exex​dx

Solution:

1+ex=tx=0⇒t=2

exdx=dtx=ln2⇒t=1+2=3

∫23​tdt​⇒(ln∣t∣)23​=ln(23​)

Example 9:

∫0π/2​cos6xdx

Solution:

n=6, =6⋅4⋅25⋅3⋅1​⋅2π​=9615π​=325π​

Example 10:

∫01​xtan−1x​dx=λ∫0π/2​sinθθ​dθ, then find λ

Solution:

L.H.S. ∫xtan−1x​dx 

 Put ​tan−1x=tx=tantdx=sec2tdt​

=∫0π/4​tantt​⋅sec2tdt=∫0π/4​sintcostt​dt=∫0π/4​sin2t2tdt​dt

​2t=θ2dt=dθ​​

=21​∫0π/2​sinθθ​dθ

∴ λ=21​

Example 11:

Evaluate ∫−2π​2π​​cosxdx. 

Solution:

∫−2π​2π​​cosxdx=2∫02π​​cosxdx=2(∵cosx is even function )

Example 12:

Evaluate  ∫−11​loge​(2+x2−x​)dx . 

Solution:

Let f(x)=loge​⇒f(−x)=loge​(2−x2+x​)=−loge​(2+x2−x​)=−f(x) 

i.e. f(x) is odd function ∴ ∫−11​loge​(2+x2−x​)dx=0

Example 13:

Evaluate ∫02​(17+8x−4x2)[e6(1−x)+1]dx​

Solution:

Let I=∫02​(17+8x−4x2)[e6(1−x)+1]dx​ 

Also I=∫02​(17+8x−4x2)[e−6(1−x)+1]dx​

Adding, we get 

2I=∫02​17+8x−4x21​(e6(1−x)+11​+e−6(1−x)+11​)dx

=∫02​17+8x−4x21​dx=−41​∫02​x2−2x−17/4dx​

=−41​∫02​(x−1)2−21/4dx​=−41​×2×221​​1​[log​x−1+221​​x−1−221​​​​]02​

=−421​1​[log​2x−2+21​2x−2−21​​​]02​⇒​I=

=−421​1​[log​2+21​21​−2​​]

9.0Practice Problems on Integrals

  • ∫cos2xsin2xcos2x​dx
  • ∫1+sin2x​sinx+cosx​dx(cosx+sinx>0)
  • ∫sin2xcos2xsin3x+cos3x​dx
  • ∫1+cosx1−cosx​dx
  • ∫cos4xdx
  • ∫ab​1+x2​dx​wherea=2e−e−1​& b=2e2−e−2​ 
  • ∫0π/4​9+16sin2θsinθ+cosθ​dθ
  • ∫ab​x∣x∣​dx
  • ∫0π/4​(xcosx⋅cos3x)dx
  • ∫23​(x−1)x2−2x​dx​

10.0Sample Questions on Integrals

Q. How do you evaluate a definite integral?

Ans: To evaluate a definite integral ∫ab​f(x)dx , find the antiderivative F(x) of f(x) and compute F(b) – F(a).

Q. What is the Fundamental Theorem of Calculus?

Ans: The Fundamental Theorem of Calculus connects differentiation and integration. It states that if F(x) is the antiderivative of f(x), then:

∫ab​f(x)dx=F(b)−F(a)

It also states that the derivative of the integral function is the original function, i.e., if

F(x)=∫ax​f(t)dt , then F'(x) = f(x).

Q. What are double and triple integrals?

Ans: Double integrals are used to compute the volume under a surface in a two-dimensional region, while triple integrals are used to calculate the volume in a three-dimensional region. They are represented as ∬ and ∭ respectively.

Table of Contents


  • 1.0Integration Definition
  • 2.0Indefinite Integral
  • 3.0Definite Integral
  • 4.0Integration Formulas
  • 5.0Some definite Formulas are
  • 6.0Double and Triple Integrals
  • 6.1Double Integrals
  • 6.2Triple Integrals
  • 7.0Integral of Inverse Trigonometric Functions 
  • 8.0Solved Examples on Integrals
  • 9.0Practice Problems on Integrals
  • 10.0Sample Questions on Integrals

Frequently Asked Questions

An integral is a mathematical concept that represents the area under a curve or the accumulation of quantities. It is the reverse operation of differentiation.

A definite integral calculates the algebric area under a curve between two specific points, providing a numerical value. An indefinite integral, on the other hand, gives a general formula (antiderivative) plus a constant, representing a family of functions.

Numerical integration involves approximate methods to calculate the value of an integral when an exact solution is difficult or impossible to find. Common methods include the Trapezoidal Rule and Simpson's Rule.

Integrals are used in various fields, including physics (calculating areas and volumes, motion, and energy), engineering (signal processing, control systems), economics (consumer and producer surplus), and probability (finding probabilities and expected values).

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State

Related Articles:-

Introduction to 3D Geometry

Three-dimensional geometry encompasses the mathematical study of shapes and figures in 3D space, involving three coordinates: the x-...

Double Integral

Double integration is a mathematical process used to compute the integral of a function over a two-dimensional region. It involves two successive...

Integrating Factor

Integrating Factor Method. This method is particularly useful for first-order linear differential equations, but it can also be applied to certain second-order equations. In this blog...

Application of Integrals

Understand the applications of integrals in finding the areas and volumes of various sections here.

Quadratic Equations

Quadratic equations, also known as quadratics, are polynomial equations of the second degree.

JEE Mathematics

The Maths syllabus for JEE Main and JEE Advanced are almost similar. When compared with Main, Advanced is more concept-based. Students need...

Integrals of Particular Functions

Integration is a method to sum functions on a large scale. Here, we discuss integrals of some particular functions commonly used in calculations. These...

  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • NEET Mock Test
    • Olympiad
    • NEET 2025 Answer Key

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO