• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Offline Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • NEW
    • JEE MAIN 2025
    • NEET
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • ALLEN e-Store
    • AOSAT
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
JEE PhysicsJEE Chemistry
Home
JEE Maths
Definite Integration

Definite Integration

The definite integral has a unique value. A definite integral is denoted by ∫ab​f(x)dx, where a is called the lower limit of the integral and b is called the upper limit of the integral.

1.0Definite Integration Definition

A definite integral is denoted by ∫ab​f(x)dx which represents the algebraic area bounded by the curve y = f(x), the ordinates x = a, x = b and the x-axis.

2.0Fundamental Theorem of Calculus

P–1 : If f is continuous on [a, b] then the function g defined by g(x) = ∫ax​f(t)dt, a ≤ x ≤ b is continuous on [a, b] and differentiable on (a, b) and g'(x) = f(x)

P–1 : If f is continuous on [a, b] then ∫ab​f(x)dx = F(b) – F(a) where F is any antiderivative of F, such that F' = f

3.0Properties of Definite Integrals

P–1 : ∫ab​f(x)dx=∫ab​f(t)dt (change of variable does not change value of integral)

P–2 : ∫ab​f(x)dx=−∫ba​f(x)dx

P–3 :  ∫ab​f(x)=∫ac​f(x)dx+∫cb​f(x)dx

P–4 : ∫−aa​f(x)dx=∫0a​(f(x)+f(−x))dx=[02∫0a​f(x)dx​ if f(x) is odd  if f(x) is even ​

P–5: ∫ab​f(x)dx=∫ab​f(a+b−x)dx or ∫0a​f(x)dx=∫0a​f(a−x)dx (King)

P–6: ∫02a​f(x)dx=∫0a​f(x)dx+∫0a​f(2a−x)dx=

[02∫0a​f(x)dx​ if f(2a−x)=−f(x) if f(2a−x)=f(x)​(Queen)

4.0Walli’s Theorem

(a) ∫0π/2​sinnxdx=∫0π/2​cosnxdx=n(n−2)…..(1 or 2)(n−1)(n−3)…..(1 or 2)​K

 where K={π/21​ if n is even  if n is odd ​

(b) ∫0π/2​sinnx⋅cosmxdx=(m+n)(m+n−2)(m+n−4)….1 or 2[(n−1)(n−3)(n−5)….1 or 2][(m−1)(m−3)….… or 2]​K Where K={2π​1​ if both m and n are even (m,n∈N) otherwise ​


5.0Derivative of Antiderivatives(Newton-Leibnitz Theorem)


 If F(x)=∫g(x)h(x)​f(t)dt, then dxdF(x)​=h′(x)f(h(x))−g′(x)f(g(x))

 Proof: Let P(t)=∫f(t)dt⇒F(x)=∫g(x)h(x)​f(t)dt=P(h(x))−P(g(x))

⇒dxdF(x)​=P′(h(x))h′(x)−P′(g(x))g′(x)=f(h(x))h′(x)−f(g(x))g′(x)

 If F(x)=, then =h′(x)f(h(x))−g′(x)f(g(x))

 Proof : Let P(t)=∫f(t)dt⇒F(x)==P(h(x))−P(g(x))

⇒dxdF(x)​=P′(h(x))h′(x)−P′(g(x))g′(x)=f(h(x))h′(x)−f(g(x))g′(x)

6.0Definite Integration as the limit of Sum

A definite integral can be evaluated using Riemann sums, which approximate the area under the curve by summing the areas of rectangles

∫ab​f(x)dx=limn→∞​∑i=1n​f(xi​)Δx

where

Δx=nb−a​

and xi is a sample point in the ith subinterval.

7.0Estimation of Definite Integral and General Inequality

  1. f(x) ≤ g(x) ≤ h(x) in [a, b] then ∫ab​f(x)dx≤∫ab​g(x)dx≤∫ab​h(x)dx
  2. If M and M are respectively the least and greatest value of f(x) in [a, b] then m (b – a) ≤ ∫ab​f(x)dx≤M(b−a)

8.0Definite Integration Questions

Example 1: ∫0ln2​1+exex​dx

Solution:

1+ex=tx=0⇒t=2

exdx=dtx=ln2⇒t=1+2=3

∫23​tdt​=(ln∣t∣)23​=ln(23​)


Example 2: ∫αβ​(x−α)(β−x)​dx​β>α

Solution:

Put x−α​=t

∫t(β−(t2+α)​2tdt​⇒2∫(β−α)−t2​dt​

⇒2sin−1(β−α​t​)⇒[2sin−1(β−α​x−α​​)]αβ​

⇒2(2π​−0)⇒π

Example 3: ∫−π/2π/2​sin4xcos6xdx=

(A) 643π​

(B) 5723π​

(C) 2563π​

(D) 1283π​

Ans. (C)

Solution:

I=∫−π/2π/2​sin4xcos6xdx=2∫0π/2​sin4xcos6x⋅dx=210.8⋅6⋅4⋅2(3.1)(5⋅3⋅1)​⋅2π​=2563π​


Example 4: ∫01​xtan−1x​dx=λ∫0π/2​sinθθ​dθ, then find λ.

Ans. 1/2

Solution:

 L.H.S. ∫xtan−1x​dx

Put

=∫0π/4​tantt​⋅sec2tdt=∫0π/4​sintcostt​dt=∫0π/4​sin2t2t​dt

2t = θ

2dt= dθ

=21​∫0π/2​sinθθ​dθ

∴λ=21​                                                                                                                                                                                                                                                                                                  


Example 5: Evaluate ∫28​∣x−5∣dx.

Solution:

∫28​∣x−5∣dx=∫25​(−x+5)dx+∫58​(x−5)dx=9


Example 6:  Evaluate ∫−11​1+3x3x+3−x​dx

Solution:

∫−11​1+3x3x+3−x​dx=∫01​(1+3x3x+3−x​+1+3−x3−x+3x​)dx=∫01​(1+3x3x+3−x​+1+3x3x(3−x+3x)​)

=∫01​(3x+3−x)dx=(ln33x​−ln33−x​)01​=(ln33​−ln33−1​)−(ln31​−ln31​)=ln31​[3−31​]=3ln38​


Example 7:  Prove that ∫0π/2​log(sinx)dx=∫0π/2​log(cosx)dx=−2π​log2

Solution:

Let I=∫0π/2​log(sinx)dx ...(i)

then I=∫0π/2​logsin(2π​−x)dx=∫0π/2​log(cosx)dx ...(ii)

adding (i) and (ii), we get

2I=∫0π/2​logsinxdx+∫0π/2​logcosxdx=∫0π/2​(logsinx+logcosx)dx

⇒2I=∫0π/2​log(sinxcosx)dx=∫0π/2​log(22sinxcosx​)dx

=∫0π/2​log(2sin2x​)dx=∫0π/2​log(sin2x)dx−∫0π/2​(log2)dx=∫0π/2​logsin2x⋅dx−(log2)(x)0π/2​

⇒2I=∫0π/2​log(sin2x)dx−2π​log2 ...(iii)

Let

I1​=∫0π/2​log(sin2x)dx,

putting 2 x=t, we get

I1​=∫0π​log(sint)2dt​=21​∫0π​log(sint)dt=21​⋅2∫0π/2​log(sint)dt

I1​=∫0π/2​log(sinx)dx

∴ (iii) becomes; 2I=I−2π​log2

Hence ∫0π/2​logsinxdx=−2π​log2


Example 8: Find the slope of the tangent to the curve y=∫xx2​cos−1t2dt at x=42​1​

Solution:

Given curve is

y=∫xx2​cos−1t2dt;dxdy​=dxd​∫xx2​cos−1t2dt

using Leibnitz theorem,  dxdy​=2xcos−1x4−cos−1x2

(dxdy​)x=42​1​​=21/42​cos−121​−cos−12​1​=23/43π​−4π​=(348​​−41​)π

9.0Practice Problems on Definite Integration

a. If f(x)=∣x∣+∣x−1∣+∣x−2∣,x∈R then ∫03​f(x)dx=

b. Evaluate: ∫01​1+x2+x4x2−1​dx

c. Evaluate: ∫0π/2​1+cosθ⋅cosxdx​θ∈(0,π)

d. The value of the integral ∫−11​log(x+x2+1​)dx is:

e. Evaluate: ∫−11​1+x666(2x332+x998+4x1668⋅sinx691)​dx

Answers:

a. 219​

b. 21​ln(31​)

c. sinθθ​

d. 0

e. 3332​[4π​+1]=666π+4​

10.0Solved Questions on Definite Integration

1. How do you define a definite integral?

Ans: A definite integral is defined as the integral of a function f(x) from a to b, denoted as ∫ab​f(x)dx, where 'a' and 'b' are the limits of integration.

2. How do you perform definite integration by parts?

Ans: Integration by parts for definite integrals is given by: ∫ab​udv=uv∣ab​−∫ab​vdu where u and v are differentiable functions.

3. How do you evaluate a definite integral using the limit of a sum?

Ans: A definite integral can be evaluated using Riemann sums, which approximate the area under the curve by summing the areas of rectangles:

∫ab​f(x)dx=limn→∞​∑i=1n​f(xi∗​)Δx , where  Δx=nb−a​ and xi∗​ is a sample point in the ith subinterval.

Table of Contents


  • 1.0Definite Integration Definition
  • 2.0Fundamental Theorem of Calculus
  • 3.0Properties of Definite Integrals
  • 4.0Walli’s Theorem
  • 5.0Derivative of Antiderivatives(Newton-Leibnitz Theorem)
  • 6.0Definite Integration as the limit of Sum
  • 7.0Estimation of Definite Integral and General Inequality
  • 8.0Definite Integration Questions
  • 9.0Practice Problems on Definite Integration
  • 10.0Solved Questions on Definite Integration

Frequently Asked Questions

Definite integration refers to the process of calculating the integral of a function between specified limits, resulting in a numerical value representing the area under the curve.

ome common rules include: Fundamental Theorem of Calculus Linearity rule Substitution rule Integration by parts

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State

Related Articles:-

Indefinite Integration

Indefinite Integration, also known as anti-differentiation, is a fundamental concept in calculus. It involves finding a function...

Double Integral

Double integration is a mathematical process used to compute the integral of a function over a two-dimensional region. It involves...

Integrals of Particular Functions

Integrals of Particular Functions have significant real-life applications, such as finding areas between curves, volumes, average v...

Important Integration Formulas

This blog covers a list of all integral formulas that are essential for JEE, along with their examples to help you understand their applications better.

Complex Numbers

A Complex Number is a Mathematical entity that combines a real number and an imaginary number. It is expressed..

Chain Rule Questions

The Chain Rule is a fundamental concept in calculus that allows us to find the derivative of composite functions. By breaking...

Coplanar Vectors

Vectors are said to be coplanar if they lie within the same plane. This means that any...

  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • NEET Mock Test
    • Olympiad
    • NEET 2025 Answer Key

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO