• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Offline Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • NEW
    • JEE MAIN 2025
    • NEET
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
    • ALLEN e-Store
    • AOSAT
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
JEE PhysicsJEE Chemistry
Home
JEE Maths
Indefinite Integration

Indefinite Integration

If f & F are function of x such that F'(x) = f(x) then the function F is called a Primitive or Antiderivative or Integral of f(x) w.r.t. x and is written symbolically as

∫f(x)dx=F(x)+C⇔dxd​{F(x)+C}=f(x) where C is called the constant of integration.

1.0Indefinite Integration Definition

Indefinite Integration, also known as anti-differentiation, is a fundamental concept in calculus. It involves finding a function whose derivative is a given function. If we have a function f(x), indefinite integration aims to determine another function F(x) such that when we differentiate F(x), we get f(x). 

In simpler terms, indefinite integration is the reverse process of differentiation. When you differentiate a function, you find its rate of change. Conversely, when you integrate, you are looking for the original function that led to that rate of change. 

2.0Indefinite Integration formulas

  • ∫(ax+b)ndx=a(n+1)(ax+b)n+1​+C;n=−1
  • ∫ax+bdx​=a1​ln∣ax+b∣+C
  • ∫eax+bdx=a1​eax+b+C
  • ∫apx+qdx=p1​lnaapx+q​+C,(a>0)
  • ∫sin(ax+b)dx=−a1​cos(ax+b)+C
  • ∫cos(ax+b)dx=a1​sin(ax+b)+C
  • ∫tan(ax+b)dx=a1​ln∣sec(ax+b)∣+C
  • ∫cot(ax+b)dx=a1​ln∣sin(ax+b)∣+C
  • ∫sec2(ax+b)dx=a1​tan(ax+b)+C
  • ∫cosec2(ax+b)dx=−a1​cot(ax+b)+C
  • ∫cosec(ax+b)⋅cot(ax+b)dx=−a1​cosec(ax+b)+C
  • ∫sec(ax+b)⋅tan(ax+b)dx=21​sec(ax+b)+c
  • ∫secxdx=ln∣secx+tanx∣+C=ln​tan(4π​+2x​)​+C
  • ∫cosecxdx=ln∣cosecx−cotx∣+C=ln​tan2x​​+C=−ln∣cosecx+cotx∣+C
  • ∫a2−x2​dx​=sin−1ax​+C
  • ∫a2+x2dx​=a1​tan−1ax​+C
  • ∫xx2−a2​dx​=a1​sec−1ax​+C
  • ∫x2+a2​dx​=ln[x+x2+a2​]+C
  • ∫x2−a2​dx​=ln[x+x2−a2​]+C
  • ∫a2−x2dx​=2a1​ln​a−xa+x​​+C
  • ∫x2−a2dx​=2a1​ln​x+ax−a​​+C
  • ∫a2−x2​dx=2x​a2−x2​+2a2​sin−1ax​+C
  • ∫x2+a2​dx=2x​x2+a2​+2a2​ln(x+x2+a2​)+C
  • ∫x2−a2​dx=2x​x2−a2​−2a2​ln(x+x2−a2​)+C
  • ∫eax⋅sinbxdx=a2+b2eax​(asinbx−bcosbx)+C=a2+b2​eax​sin(bx−tan−1ab​)+C
  • ∫eax⋅cosbxdx=a2+b2eax​(acosbx+bsinbx)+C=a2+b2​eax​cos(bx−tan−1ab​)+C

3.0Indefinite Integration Methods

  • Integration by Substitution
  • Integration using Partial Fraction
  • Integration By parts

Integration by Substitution: 

If ϕ(x) is a continuous differentiable function, then to evaluate integrals of the form ∫f(ϕ(x))ϕ′(x)dx, we substitute φ(x)=t  and φ′(x)dx=dt .

Hence I=∫f(ϕ(x))ϕ′(x)dx reduces to ∫f(t) d t.

Integration By Part: 

∫u⋅vdx=u∫vdx−∫[dxdu​⋅∫vdx] dx where u & v are differentiable functions and are commonly designated as first & second function respectively. 

Note:  While using integration by parts, choose & such that 

(i) ∫vdx & (ii) ∫[dxdu​⋅∫vdx]dx are simple to integrate.

This is generally obtained by choosing the first function as the function which comes first in the word ILATE, where; I-Inverse function, L-Logarithmic function, A-Algebraic function, T-Trigonometric function & E-Exponential function. 

Let 

​ I =∫f(x)⋅g(x)dx =f(x)⋅∫g(x)dx−∫(f′(x))(∫g(x)dx)dx​

= 1st function × integral of 2nd – ∫ (diff. of 1st )×( integral of 2nd )dx

  1. ∫ex(f(x)+f′(x))dx=exf(x)+c
  2. ∫eax⋅sinbxdx=a2+b2eax​(asinbx−bcosbx)+c
  3. ∫eax⋅cosbxdx=a2+b2eax​(acosbx+bsinbx)+c

Integration of Trigonometric Functions:

∫sinmxcosnxdx

Case-I: When m & n ∈ natural numbers.

  • If one of them is odd, then substitute for the term of even power.
  • If both are odd, substitute either of the term.
  • If both are even, use trigonometric identities to convert integrand into cosines of multiple angles.

Case-II: m + n is a negative even integer.

  • In this case the best substitution is tanx = t.

Integral of the form: 

∫a+bsinxdx​ OR ∫a+bcosxdx​ OR ∫a+bsinx+ccosxdx​

Convert sines & cosines into their respective tangents of half the angles & put tan2x​=t 

In this case sinx=1+t22t​,cosx=1+t21−t2​,x=2tan−1t;dx=1+t22dt​

Integral of the form:

∫pcosx+qsinx+racosx+bsinx+c​dx

Express Numerator (Nr)=ℓ(Dr)+m(Dr)+n & proceed.

Integral of the form: 

∫ax2+bx+cdx​,∫ax2+bx+c​dx​

Express ax2+bx+c in the form of a perfect square & then apply the standard results.

∫ax2+bx+cpx+q​dx,∫ax2+bx+c​px+q​dx

Express px + q = l (differential coefficient of denominator) + m.

Integrals of the form:

∫x4+Kx2+1x2+1​dx OR ∫x4+Kx2+1x2−1​dx where K is any constant.

Divide Nr&Dr by x2 & proceed.

Note: Sometimes it is useful to write the integral as a sum of two related integrals, which can be evaluated by making suitable substitutions e.g.

  • ∫x4+12x2​dx=∫x4+1x2+1​dx+∫x4+1x2−1​dx
  • ∫x4+12​dx=∫x4+1x2+1​dx−∫x4+1x2−1​dx

These integrals can be called as Algebraic Twins.

Integration of Irrational functions:

  • ∫(ax+b)px+q​dx​ and ∫(ax2+bx+c)px+q​dx​; put px+q=t2
  • ∫(ax+b)px2+qx+r​dx​, put ax+b=t1​; ∫1​(ax2+b)px2+q​dx​,putx=t1​

Manipulating integrands:

  • ∫x(xn+1)dx​,n∈N,take xn common & put 1+x−n=t 
  • ∫x2(xn+1)(n−1)/ndx​,n∈N, take xn  common & put 1+x−n=tn
  • ∫xn(1+xn)1/ndx​,take xn common and put 1+x−n=tn. 

4.0What is the Difference Between Definite and Indefinite Integration?

Certainly! Here’s a tabular comparison between definite and indefinite integration:

Aspect

Indefinite Integration

Definite Integration

Definition

Finding a function whose derivative is the given function.

Calculating the exact value of the integral over a specified interval.

Result

A family of functions plus an arbitrary constant C.

A single numerical value.

Purpose

To find the general antiderivative of a function.

To find the exact area under a curve within specified limits.

Notation

∫f(x)dx

∫ab​f(x)dx

Involves Limits

No

Yes (upper and lower limits)

Constant of Integration

Includes a constant C.

Does not include a constant C.

Fundamental Theorem of Calculus

The indefinite integral F(x) is used to evaluate definite integrals.


∫ab​f(x) d x = F(b) - F(a), where F(x) is the antiderivative of f(x).

Examples

∫x3dx=4x4​+C

∫02​x3dx=[4x4​]02​=4

Representation

General form of the antiderivative.

Exact area under the curve between x = a and x = b.

Usage

Solving differential equations, finding general solutions.

Calculating areas, distances, volumes, and other quantities.

5.0Indefinite Integrals Examples

Example 1: ∫(x+5)2dx

Solution:

M-1: =∫(x2+25+10x)dx=3x3​+210x2​+25x+C

M-2: =3(x+5)3​+C=3x3+15x2+75x+125​+C

Example 2: Evaluate ∫8x+3dx​

Solution: 81​ln∣8x+3∣+C

Example 3: ∫cos3xdx

Solution: ∫43cosx+cos3x​dx [cos3x = 4 cos3x – 3cosx]

⇒∫43cosx​dx+∫4cos3x​dx

⇒43sinx​+12sin3x​+C

Example 4: ∫1+x2sin(tan−1x)​dx

Solution:

Put, tan–1x = t

1+x21​dx=dt

⇒∫sintdt = –cos t + C = –cos(tan–1x) + C 

Example 5: ∫sin2xtanx​​dx

Solution:

∫2tanxtanx​​(1+tan2x)dx⇒∫2tanxtanx​​sec2xdx

Put tan x=t

sec2x dx = dt

21​∫(t)−1/2dt=2×1t1/2×2​+C

=t​+C

=tanx​+C

Example 6: ∫cos2x−36sinxdx​

Solution:

put cosx = t ⇒ –sinx dx = dt 

∫t2−(6)2−dt​=−2.61​ln​t+6t−6​​+C

=−121​ln​cosx+6cosx−6​​+C

Example 7: ∫ex(sinx+cosx)dx

Solution:

∫ex(sinx+cosx)dx​⇒exsinx+C

Example 8: Evaluate I=∫ex⋅sinxdx

Solution:

Method-I:   

I=sinx⋅ex−∫cosx⋅exdx

⇒I=sinxex−[cosxex−∫(−sinx)exdx]

⇒I=sinxex−cosxex−I

⇒2I=sinxex−cosxex

⇒I=21​(sinx−cosx)ex+c

Method-II : Assume ∫eaxcosbxdx=eax(Acosbx+Bsinbx) and then differentiate both sides

Example 9: Evaluate ∫sin2xcos4xdx

Solution:

∫sin2xcos4xdx=∫(21−cos2x​)(2cos2x+1​)2dx

∫sin2xcos4xdx=∫(21−cos2x​)(2cos2x+1​)2dx

=∫81​(1−cos2x)(cos22x+2cos2x+1)dx

=81​∫(cos22x+2cos2x+1−cos32x−2cos22x−cos2x)dx

=81​∫(−cos32x−cos22x+cos2x+1)dx

=−81​∫(4cos6x+3cos2x​+21+cos4x​−cos2x−1)dx

=−321​[6sin6x​+23sin2x​]−161​x−64sin4x​+16sin2x​+8x​+C

=−192sin6x​−64sin4x​+641​sin2x+16x​+C

Example 10: Evaluate: ∫sinθ+2cosθ+32+3cosθ​dθ

Solution:

Write the Numerator = ℓ(denominator) + m(d.c. of denominator) + n 

⇒ 2 + 3 cosθ = l(sinθ + 2cosθ + 3) +m (cosθ – 2sinθ) +n.

Comparing the coefficients of sinθ, cosθ and constant terms, 

we get 3 l+n=2,  2l + m = 3, l – 2m = 0  

⇒  l = 6/5, m = 3/5 and n = –8/5

Hence,   I=∫56​dθ+53​∫sinθ+2cosθ+3cosθ−2sinθ​dθ−58​∫sinθ+2cosθ+3dθ​

=56​θ+53​ln∣sinθ+2cosθ+3∣−58​I3​ where 

t3​=∫sinθ+2cosθ+3dθ​

In I3, put tan2θ​=t⇒sec22θ​dθ=2dt

I3​=2∫t2+2t+5dt​=2∫(t+1)2+22dt​=2.21​tan−1(2t+1​)=tan−1(2tanθ/2+1​)

Hence 

I=56θ​+53​ln∣sinθ+2cosθ+3∣−58​tan−1(2tanθ/2+1​)+C

6.0Practice Questions on Indefinite Integral

  1. Solve ∫cosx−cosαcos2x−cos2α​dx
  2. Solve ∫cosx+1−2sin22xsin2x+sin5x−sin3x​dx
  3. Solve ∫sin2ϕcos2ϕdϕ​
  4. Solve ∫1+tan2x1−tan2x​dx
  5. Solve ∫(3sinxcos2x−sin3x)dx
  6. Integrate with respect to x:ex+xex+1​
  7. Solve ∫1−(3x​)2​d(3x​)​
  8. Solve ∫x4x2−3​dx​
  9. What is the power rule in indefinite integration?

Answers:  

  1. 2[sinx+xcosα]+c

2. –2(cosx) + c

3. –2cot2x + c

4. 21​sin2x+c

  1. −31​cos3x+c
  2. ln (ex + x) + c
  3. sin−1(3x​)+c
  4. 9cosec(tan−13​x​)​−27cosec3(tan−13​x​)​+c
  5. The power rule states that for any real number n ≠ –1, the indefinite integral of xn is given by: ∫xndx=n+1xn+1​+C

Table of Contents


  • 1.0Indefinite Integration Definition
  • 2.0Indefinite Integration formulas
  • 3.0Indefinite Integration Methods
  • 4.0What is the Difference Between Definite and Indefinite Integration?
  • 5.0Indefinite Integrals Examples
  • 6.0Practice Questions on Indefinite Integral

Frequently Asked Questions

Indefinite integration, also known as anti-differentiation, is the process of finding a function F(x) whose derivative is a given function f(x). It results in a family of functions plus a constant of integration, represented as F(x) + C.

The constant C represents the family of all possible antiderivatives. Since differentiating a constant results in zero, different constants added to the antiderivative still produce the same derivative.

To perform indefinite integration, you use known integration rules and formulas, such as the power rule, sum rule, and substitution method, to find the antiderivative of the given function.

An antiderivative of a function f(x) is a function F(x) such that F'(x) = f(x). Indefinite integration aims to find this antiderivative.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State

Related Articles:-

Definite Integration

The definite integral has a unique value. A definite integral is denoted by....

Aquire Understanding in Integral Calculus

Integral calculus is a fundamental branch of mathematics that extends our understanding of accumulation, areas under curves, and much more.

Integrals of Particular Functions

Integration is a method to sum functions on a large scale. Here, we discuss integrals of some particular functions commonly used in calculations.

Integrating Factor Method To Solve Differential Equations

One of the powerful techniques for solving linear differential equations is the Integrating Factor Method. This method is...

Derivative Function Calculus

In mathematics calculus, the derivative of a function at a particular point provides the slope of the tangent line to the function's graph at that point.

Properties of Determinant of a Matrix

The determinant of a matrix is a single numerical value that provides important insights into the properties...

Inverse Trigonometric Functions

Inverse Trigonometric Functions, also known as arcus, anti-trigonometric, or cyclometric functions...

  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • NEET Mock Test
    • Olympiad
    • NEET 2025 Answer Key

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO